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The Taylor column problem 
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Pierce Hall, Harverd University? 
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We consider here flow past an obstacle on the lower of two rotating horizontal 
planes which bound a viscous fluid. It is found that when the Taylor number is 
large viscous effects are confined to Ekman boundary layers on the solid surfaces 
and to a free shear layer coincident with the vertical cylinder circumscribing the 
bottom obstacle. The flow in the main body of the fluid outside the cylinder 
proves to be two-dimensional with zero relative vorticity, while inside the 
cylinder the fluid is stagnant in the rotating frame. The shear layer provides a 
continuous transition between the exterior and interior of the cylinder, and in 
addition provides a means by which fluid from the Ekman layers on the hori- 
zontal planes is exchanged with fluid outside the Ekman layers and exterior to 
the circumscribing cylinder. The predicted flow proves to be in agreement with 
many of the experimental results. 

1. Introduction 
When a solid body moves horizontally with low Rossby number in a fluid 

rotating about a vertical axis, the vertical cylinder circumscribing the body 
separates regions of dissimilar velocity distribution. The fluid inside the circum- 
scribing cylinder moves with the body while the fluid outside the cylinder flows 
around it in a two-dimensional pattern. This result was discovered experimentally 
by Taylor (1923) and the phenomenon is often called a Taylor column. 

Certain features of the experiment can be explained on the basis of the Taylor- 
Proudman theorem, which states that steady geostrophic motions are indepen- 
dent of distance along the rotation vector. For a vertical rotation vector the 
presence of bounding horizontal planes suppresses vertical motions. Therefore 
the flow inside a vertical cylinder circumscribing a three-dimensional body must 
be directed along the contours of the body. The absence of flow through the 
circumscribing cylinder is thereby explained, but an argument based on the 
Taylor-Proudman theorem alone cannot account for the stagnation relative to 
the body inside the circumscribing cylinder observed by Taylor. 

A number of authors (e.g. Stewartson 1953) have studied the motion of bodies 
in a rotating fluid using an inviscid time-dependent model. The ultimate steady- 
state solution for this problem when the motion is at right angles to the axis of 
rotation is in marked disagreement with experiment. It appears that the limit 
v + 0, time + 00, is non-uniform, and that an inviscid theory is valid for small 
times only. 

t Present address : Department of Meteorology and Oceanography, University of 
Michigan. 
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We consider here steady viscous flow past a bottom obstacle in a rotating fluid 
of finite depth. The model is simple but is believed to contain the features neces- 
sary for the phenomenon. This is confirmed by the solution, which is in satis- 
factory agreement with Taylor’s observations. 

b 
Y* 

2. Formulation 
Let x* = (x*, y*,z,) be the position vector in a co-ordinate system rotating 

with angular velocity s23,, q*  the velocity vector, p, the pressure, p the density, 
and v the kinematic viscosity. The fluid is bounded by rigid horizontal planes a 
distance D apart at rest in the rotating frame, with an obstacle on the lower plane 
with circular contours and finite horizontal extent L. At xi + yt  = 00 the flow in 
the main body of the fluid is uniform with magnitude c in the positive x* 
direction. 

D ---c 
C 

$* 
FIGURE 1. Configuration. 

If we introduce dimensionless unstarred variables through 
x* = Lx, q* = cq, 

the steady-state dimensionless equations of motion become 
p*/p = &P(x2, + y2,) + ZRcLp, 

e (q .  V) q +  2 x q+ Vp = (1/2R) V2q, (2.1) 

v .q  = 0, (2.2) 

where e = c/(2QL) is the Rossby number and R = QL2/v a Taylor number. 
Letting d = D / L  be the dimensionless separation distance and z = b(r) the 
equation of the bottom obstacle, where r = (x2+y2)&, we have as boundary 
conditions q = 0 at z = d,  at z = 0 for r 1, and a t  z = b(r) for r < 1. We consider 
only the case of small e and large R, and assume that the non-linear terms can be 
neglected. The problem then reduces to solving the linear equations 

2 x q + V p  = (1/2R)V2q, (2.3) 

and (2 .2 )  subject to the condition q = 0 at solid surfaces. 
It proves convenient to use cylindrical co-ordinates (r,  8, z )  with velocity 

components (u, v, w). Equations (2.3) and (2.2) in component form are given by 

(2 .5 )  
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_ - _  ap v2w, 
az - 2R 

l a @ )  1 %  aw 
-___ +--+- = 0. 
r ar r a8 az 

3. The Ekman layers 
The awkward geometry precludes an exact treatment of the linear problem, 

but an approximate solution can be obtained through the use of singular pertur- 
bation theory. A necessary first step is the calculation of the normal velocity at  
the edges of the Ekman layers on the solid boundaries. 

For the boundary 2 = b(r),  set q = q, + q B ,  p = pr  +pB,  where the boundary- 
layer parts q, and p B  are to be exponentially small away from the boundary. 
Let 5 = x - b(r) so that (r ,  8, <) is an oblique co-ordinate system with y = 0 at the 
boundary, and let t = RiC. The Laplacian is R( 1 + b’2) ($/at2) + O(R*), and the 
boundary-layer equations become 

be the velocity components normal to, and along a generator of, C = 0. Prom 
(3 .3)  and (3 .4 ) ,pB  and FB are O(R-*) and the boundary-layer equations to lowest 

(3 .5 )  order are 

(3.6) 

- V B  = i( 1 + b&)j (a2GB/at2), 

G~ = 4( 1 + b’2)4 (a2vB/at2), 

(3 .7 )  

The solution of (3 .5 )  and (3 .6 )  satisfying 

is 
q I ( r ,  8, O )  + q B ( r ,  8, O )  = 

v5 = -e-T [vI(r, 8 , O )  cos 7 - GI(r ,  8 , O )  sin 71, 
GB = - e-.[GI(r, 8 , O )  cos 7 + vI(r, 8 , O )   sin^], 

(3 .8 )  

(3.9) 
where 
Substitution into the continuity equation, integration to get FB, and application 
of the boundary condition yields 

7 = (1 + b’2)-3t. 

1 a a 
FI = ((1 + V2)-2_ae ( v I - G ~ )  +$ [r(l + b’2)* (v,+ G I ) ] ]  (3.10) 

2Rh 2/( 1 + V 2 )  
at 6 = 0. 
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Changing back to cylindrical polar co-ordinates, we obtain 

u1+6'w)]) (3.11) + - + b  - r ( l + b f 2 ) *  vI+ 

I - - - - ( (1+b'2)g-  1 WI-b'u - wI- U I  + b'wI 
:O ( J ( l + b f 2 )  2 R b  

(:r ':z) [ ( . J ( l + b f 2 )  

a t  z = b(r). Setting b = 0 yields the boundary condition at z = 0,  r > 1, 

(3.12) 

Equations (3.5), (3.6), and (3.7) are symmetrical under the transformation 
t + - t ,  FB+-FB, so a t  z = d 

2RB 
(3.13) 

These three equations provide the boundary conditions for the interior 
problem. It may be noted that when b' is O(R*) the boundary-layer thickness is 
no longer small and the boundary-layer calculation invalid. With little loss of 
generality, we consider here only obstacles with slope of order unity or smaller. 

4. The interior problem 
We consider below the flow outside of the Ekman layers, and accordingly drop 

the subscript on qI. We assume initially that in the main body of the fluid q is a 
smooth function of x. Then to lowest order the momentum equation becomes 

Bxq+vp = 0, (4.1) 

aqlaz = 0. (4.2) 

the curl of which is the Taylor-Proudman theorem, 

In  the region 0 < r < 1 ,  q is found by solving 

(4.3) 

(4.4) 

and in the region r > 1 by solving (4.3), (4.4), and 

1 a(rw) au w = -  
2R*r (4.6) 
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We wish first to show that any q which is continuous and axially symmetrical 
over the bottom obstacle must Banish. In  the case of axial symmetry, u = 0 for 
boundedness at r = 0. As w is O(R-*), (4.5) becomes 

[r( 1 + b’2)f v] 
1 d  

2 R b  dr 
w = -- (4.7) 

to lowest order, and this combines with (4.4) to yield 

d (r[  1 + (1 + b‘2)i]  v>/dr = 0. 

q = q( 0) + R-*q(-*) + R-lq(-l) + . . . 

(4.8) 

Therefore v = w = 0 by the boundedness condition. If an ordinary perturbation 
expansion 

is introduced, i t  is easily verified that if q ( O )  = 0 the rest of the terms in the series 
also vanish. 

(4.9) 

Now if for some ro < 1 ,  b‘ is O(Ro) on ro < r < 1, then 
u(o) = = avco)/ae = o 

in this region. q ( 0 )  is axially symmetric, must therefore be axially symmetric for 
r < ro, and hence vanishes on 0 < r < 1. The rest of the terms in the series also 
vanish, and q = 0 over the bottom obstacle. 

This result is not obtained if b‘ is small everywhere, for then q is not directed 
along the depth contours and need not be axially symmetric. For dealing with 
this case, let b’ = - R-*B(r) and regard B as being of order unity. Introducing 
(4.9), we obtain for the lowest order equations w(O) = 0 and 

(4.10) 

(4.11) 

Eliminating do) and setting 
ru(0) = Re [fQ(r) ed%@], 

yields ryi + rj: - (n2 - inB)fn = 0, (4.12) 

which for n 4 0 has a solution behaving like rl+s at the origin, 6 being positive. 
If b‘ is O(R-*) there is no Taylor column phenomenon. 

For r > 1, we have 

w = 4R-k; . V  x q = - 4R-i 2. V x q = 0 (4.13) 

and the flow in this region is irrotational and two-dimensional. At r = co 

u = cos0, v = -sine, w = 0, 

in the main body of the fluid. Therefore the horizontal velocity is given by the 
irrotational two-dimensional solution 

u = Re [( 1 - Ally2) ece], 

v = Re [Ao/r + i( 1 + Al/r2) eie],  

(4.14) 

(4.15) 
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where A ,  and A ,  are constants, and the axially symmetric mode represents a 
circulation. If q = 0 for r < 1, there must be a vertical shear layer a t  r = 1 to 
provide a smooth transition between the two flow rbgimes. The shear layer 
solution determines A,  and A,. If b' is small, q does not vanish over the bottom 
obstacle, and the constants are determined by matching. 

It should be noted that the details of the obstacle shape have no bearing on 
whether or not a Taylor column is formed, the only restriction being that the 
slope of the obstacle is of order unity somewhere within the circumscribing 
cylinder. The influence of bottom slope on the phenomenon can be deduced from 
a physical argument based on the result for the normal velocity component a t  the 
edges of the Ekman layers. For constant slope 

(1 + bt2)* 
2R8 

F =  

a t  z = b, where ii is the outward normal to the surface. If a horizontal stream is 
forced over the bottom obstacle, there is a flux into the Ekmanlayer of magnitude 
b' which induces a relative vorticity of magnitude b'R4. For b' of order unity, the 
curvature of the streamlines is so large that the fluid flows around rather than 
over the obstacle. The time development of a Taylor column would probably 
consist of the formation of a closed streamline pattern over the obstacle followed 
by a decay of this motion through the spin-down mechanism described by 
Greenspan & Howard (1963). If the bottom slope is small, the induced vorticity 
is not large enough to cause a closed streamline pattern over the obstacle. 

A different vorticity argument, based on an inviscid inertial theory, has been 
developed by Hide (1961). Hide uses the potential vorticity theorem, which 
states that 1 +&. v x q 

d - b  

is constant on streamlines. A streamline originating at  r = 00 acquires a relative 
vorticity equal to - b/(ed) as it passes over a bottom obstacle. For small Rossby 
number the curvature of the streamlines is large and a closed streamline pattern 
results. An inviscid theory can be useful in describing the initial states of the 
formation of a Taylor column even if the theory is invalid for large times, and 
Hide's mechanism would seem to be correct when the Rossby number is suffi- 
ciently large that the non-linear accelerations cannot be neglected. 

As a final remark on the results obtained thus far, it is easily verified that the 
boundary conditions for w at the plane boundaries are unchanged if the planes 
move parallel to themselves with constant velocity. Therefore the results are 
equally valid for an obstacle moving in a fluid at rest at infinity, the only 
difference being that the Ekman layers on the plane boundaries vanish at 
r = co. 

5. The shear layer 
The shear layer which provides the transition for removing discontinuities in q 

is similar to the vertical boundary layers in axially symmetric flow discussed in the 
literature, most recently by Greenspan & Howard (1963). In  treating the flow 
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for z and ( d - z )  > R-4 the boundary conditions derived previously for the 
normal velocity component at the edges of the Ekman layers may be used. The 
approximate form of these boundary conditions appropriate for a shear layer 
at r = 1 is 

and l a  
w - b’u = __ - [( 1 + b’2)i v] at z = b(r) ,  

2 ~ 4  ar 
where b = 0 for r 2 1. To lowest order the lower boundary condition can be 
applied at z = 0 since b(1 )  = 0. The equations of the shear layer are ob- 
tained by retaining only the most highly differentiated terms in r in the 
equations of motion written in polar co-ordinates and setting r = 1 wherever i t  

1 a3v aw 
a~ 2Rar3’ (5.3) - 

occurs, and are given by _ _ _ - -  

We will use a boundary-layer theory of matching type and require that q = 0 

u = Re[(1-A,/r2)eie], (4.14 bis) 

v = Re [A,/r + i( 1 +A,/r2)  eiB], (4.15 bis) 

for (r - 1) negative and order unity, and w = 0 and 

for (r - 1) positive and order unity. 
Eliminating v between (5.3) and (5.4) yields 

which implies that 5 = Rffr- 1) 

is the scaled boundary-layer co-ordinate if (a2w/az2) is of the same order in R as 
w. However, the shear layer cannot exist if R-f is the only scale of motion. This 
is because v and w are of the same order of magnitude in a shear layer of thickness 
R-* and w vanishes at z = d and z = 0 with an error of order R-*. The equation 
for w is then homogeneous with homogeneous boundary conditions. 

Another scale is obtained by requiring the right and left sides of (5.1) and (5.2) 
to have the same order of magnitude. If the right and left sides of (5.4) are also 
of the same order in R, the scale of motion is R-%, the ratio of v to w is of order 
Rg, and (5.3) is not of boundary-layer character. The remaining possibility is for 
the two sides of (5.3) to be in balance. The resulting length scale is R-i, u and w 
are smaller than v by a factor of R-i, and the equations of the R-i layer are 

avpz = 0, ( 5 4  
au av 
ar ae -+- = 0. (5.9) 
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Integrating (5.7) over z and applying the upper boundary condition, we obtain 

(d -2 )a3v  1 av 
2R ar3 2Rtar’ 

w=----- 

and application of the lower boundary condition yields 

{[ 1 + (1 + b’2)4] V }  - b’u = 0. 
a a3v 1 a 

2Rar3 2Rtar 

(5.10) 

(5.11) 

If the motion is axially symmetric, u = 0 to lowest order from (5.9) and the 
boundary condition a t  the inner edge of the shear layer. Integrating (5.11) and 
applying the condition at the inner edge of the shear layer yields 

v = 0 ,  
d2v 
dr2 2Rid 

1 + (1 + b’2)t -- (5.12) 

which has v = 0 as the only soliition which does not grow exponentially as 1 r - 1 1 
becomes of order unity. Therefore there is no axially symmetric mode. Now let 

u = Re [ f ( r )  cis] 

v = Re Cf’ieie], so that 

(5.13) 

(5.14) 

(5.15) 

and (5.11) becomes 

(d/2R)fiV - &R-* {[ 1 + (1 + b’2)tIf’)’ + i b’f = 0. (5.16) 

We consider first the case b’(1- ) + 0, corresponding to a discontinuity in 
bottom slope at r = 1, and let b’( 1 - )  = - tanp. Then to lowest order 

(5.17) 

in the shear layer, where H is equal to 1 for positive argument and 0 for negative 
argument. Equation (5.16) has constant coefficients for I r - 1 I > 0 and 

Letting y = RB(r - 1) be the scaled shear-layer co-ordinate, we obtain 

and 

with f and its first two derivatives continuous at y = 0 and with 

a3f(0 + ) a3f(0 - ) - J ( ~ ~ ~  p) - 1 q o )  
dy3 J(c0sP) dy ’ 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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The solution for f is 

f = y{H( - 7) [B, e w  + B2e82v] + H ( y )  [B3e+s9 + B4 +TI}, (5.22) 

where sl, s2 = (2cZ-g (cos p)-% { 1 + (cos ,8)* f [ ( 1 + (cos p)4)2 + 8id sin ,8]4}4 
are the solutions with positive real parts of 

s3 = (2/d)4,  y is a constant to be determined from the conditions at the outer edge 
of the shear layer, and 

1 B, = __ {s3[s; - s2s3 - s;]}, 
si Q 

B3 = ~~{s;+s,s ,+s; -s ; ) ,  (8 - 
83 Q 

For large positive 7, 

u = Re {[y(B4 + R i ( r  - l))]  eie}, v = Re [yRiieie], 

while for small positive ( r -  1) (4.14) and (4.15) become 
u = Re{[1 -Al+ 2A,(r- l)]  eie), v = Re{[(l +A,-  2 A 1 ( ~ -  l ) ]  ieie}, 

whence 
Therefore, with terms of order R-4 neglected, w = 0 and 

u = Re {[( 1 - l/r2) + 2R-iB4/r2] eie}, (5.23) 
v = Re {[( 1 + l/r2) - 2B-*B4/r2] ieie>, (5.24) 

in the main body of the fluid for r > 1. To lowest order the flow pattern is the 
same as for potential flow around a cylinder, but a small radial velocity at r = 1 
is caused by a convergence or divergence in the shear layer. 

The solution for w as calculated from (5.15) and (5.22) has a delta function 
singularity at r = 1 which is removed in a shear layer of thickness R-*. The v and 
w components induced in this shear layer are of order R-* and the u component 
of order R-4, The form of these solutions is similar but not identical to that of the 
solutions given by Greenspan & Howard (1963). 

The only other case we will consider is that of b'( 1 - ) = 0 and b"( 1 - ) = A > 0, 
corresponding to a bottom with continuous slope and discontinuous curvature 
at r = 1. I n  the shear layer 

b' = h(r - 1) H (  1 - r )  = R-fhyH( - y), (5.25) 

y = 2R-4 + O ( R t ) ,  A ,  = 1 - 2 R 4 B 4  + O(R-*). 

and the equation for f for 7 < 0 is 

(5.26) 
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instead of (5.20). A solution can be obtained in the form of contour integrals 
which can be evaluated for large R by means of the method of stationary phase. 
The result is that (5.26) has a rapidly varying solution of the form exp (sar) and 
a slowly varying solution in the form of an Airy function, 

(5.27) ( - v ) * H t )  [#h*R-ie*i"( - 7)*]. 

The slowly varying solution has a length scale R-Q and satisfies 

(5.28) 

which can be obtained by neglecting viscosity entirely in the main body of the 
fluid and retaining it only in the boundary conditions (5.1) and (5.2). The shear 
layer is thicker in this case than for a bottom with discontinuous slope at r = 1. 

There are a number of points of interest connected with the shear layer. In  
addition to providing a transition between the potential flow region and the 
Taylor column, the shear layer serves as a means by which fluid is transferred 
from the Ekman layers at z = 0 and z = d to the potential flow region. From 
(5.1) and (5.2), the transport from the Ekman layer parts of the shear layer into 
the interior part of the shear layer is given by 

,tR-8 Re [2i ei@] = - R-* sin 0, 

which is equal to the radial transport into the shear layer in each of the Ekman 
layers on the plane boundaries. This fluid is no doubt returned to the main body 
of the fluid by means of an order R-) radial velocity at the outer edge of the shear 
layer. 

Equation (5.22) and the formulae following it show that the effect of taking d 
to be very large is to thicken the shear layer, and in the limit d --f co the shear layer 
approach is invalid. A likely explanation is that the limit d+co, time-tco is 
non-uniform and that the character of the flow is different for large d than that 
given above. 

If b' is small in the neighbourhood of r = 1, the shear layer is thicker than if 
b'( 1 - ) is of order unity, and motions extend further in over the bottom obstacle. 
If b' is small everywhere, there is no Taylor column and (5.22) represents the 
form of the solution for small ( r -  1) obtained by matching the flow over the 
obstacle to the potential flow. 

6. Concluding remarks 
An estimate of how small the Rossby number must be for the non-linear 

accelerations to be neglected can be made by calculating the magnitude of the 
neglected terms, The most stringent restriction on the magnitude of e comes from 
a comparison of the 0 components of the non-linear and Coriolis accelerations in 
the Ekman layer on the bottom obstacle. The former of these is of order eRa and 
the latter of order R-t, so the linearization is internally consistent only if 
eR* < 1, a severe restriction. 

The agreement with Taylor's experimental results is fairly good. In  the large R 
limit the predicted flow in the main body of the fluid consists of stagnation for 
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r < 1 and two-dimensional irrotational flow without circulation for r > 1, with 
no radial flow through r = 1. These features of the flow agree with Taylor’s 
observations. However, Taylor has observed that one branch of the dividing 
streamline leaves the cylinder r = 1 and breaks up into eddies. There is no 
indication of this in the present theory. 

The agreement with recent experiments by Ibbetson (1963) is less satisfactory. 
Ibbetson finds that the flow is highly unstable when the bottom obstacle is a cone 
or hemisphere, and he has been unable to find a Taylor column for any bottom 
obstacle but a right circular cylinder. His results contradict Taylor’s and limit 
the usefulness of the present theory. 

This work was supported by the National Science Foundation under a grant 
to Harvard University. 
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